Default Priors for Gaussian Processes

نویسنده

  • Rui Paulo
چکیده

Motivated by the statistical evaluation of complex computer models, we deal with the issue of objective prior specification for the parameters of Gaussian processes. In particular, we derive the Jeffreys-rule, independence Jeffreys and reference priors for this situation, and prove that the resulting posterior distributions are proper under a quite general set of conditions. A proper flat prior strategy, based on maximum likelihood estimates, is also considered, and all priors are then compared on the grounds of the frequentist properties of the ensuing Bayesian procedures. Computational issues are also addressed in the paper, and we illustrate the proposed solutions by means of an example taken from the field of complex computer model validation. ∗Research was supported by the U.S. National Science Foundation, Grants DMS-0073952 at the National Institute of Statistical Sciences, DMS-0103265, and the Statistical and Applied Mathematical Sciences Institute. This research formed part of the author’s Ph.D. thesis at Duke University, where he was partly supported by a Ph.D. Fellowship awarded by Fundação para a Ciência e a Tecnologia, Portugal, with reference PRAXIS XXI/BD/15703/98.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

DEFAULT PRIORS FOR GAUSSIAN PROCESSES By Rui Paulo

Motivated by the statistical evaluation of complex computer models, we deal with the issue of objective prior specification for the parameters of Gaussian processes. In particular, we derive the Jeffreys-rule, independence Jeffreys and reference priors for this situation, and prove that the resulting posterior distributions are proper under a quite general set of conditions. Another prior speci...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Nonparametric Bayesian Methods

. Most of this book emphasizes frequentist methods, especially for nonparametric problems. However, there are Bayesian approaches to many nonparametric problems. In this chapter we present some of the most commonly used nonparametric Bayesian methods. These methods place priors on infinite dimensional spaces. The priors are based on certain stochastic processes called Dirichlet processes and Ga...

متن کامل

Mixtures of Gaussian process priors

Nonparametric Bayesian approaches based on Gaussian processes have recently become popular in the empirical learning community. They encompass many classical methods of statistics, like Radial Basis Functions or various splines, and are technically convenient because Gaussian integrals can be calculated analytically. Restricting to Gaussian processes, however, forbids for example the implementi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003